Tunguskagyrus planus was a Permian whirligig described by Evgan Yan *et alia* (2018) from Russia. The reconstructed scene demonstrates its gyrinid credentials and habit.
IRELAND 8-11 JUNE 2018

Who remembers Eyjafjallajökull? In 2010 that volcano almost scuppered the Club meeting in the Burren as international flights were so disrupted. We left the Club sweltering at 20°C on 28 May 2010 only to find that it was more like 29°C when we came back in 2018. This greatly reduced the amount of habitat available to us in County Kerry. The blanket bog was tinder-dry and many loughs and rivers were well below their usual drawdown zones. Twenty-four people assembled at Killorglin, representing seven countries, with a welcome increase in the female complement. Killorglin is on the Ring of Kerry and is renowned for the Puck Fair, with its goat mascot below which the group photographs were delivered.

Everyone met up for the Friday night, when we held the Club Dinner in the Sol y Sombra Tapas Restaurant, a conversion of the St James Church of Ireland, with us taking over the upper floor. This had been heralded as the best tapas restaurant in Ireland (even the world) and it lived up to its reputation, amplified by the intense Iberian heat of an Irish evening. Our speakers managed to deliver their points despite the rumpus downstairs. Kevin Scheers had brought the Ierse Trophy from Belgium newly adorned with a jumping frog and the trophy was awarded to Will Watson for his triumphal performance with Taktota Jabilaya in Morocco the previous month (see Latissimus 41 3). Brian Nelson, our principal organiser, had been warned that he wasn’t going to get it, and he seemed to hide his disappointment fairly well. [Brian, if you saw the video you will see that the bar has been raised. Nothing short of swimming stark naked through a mosquito-infested Arctic lake will suffice for the next award.] On that topic Anders Nilsson then explained what was planned for the Arctic trip in June 2019. Outside we were met by sobering rain, the first to fall for many days in the area, and fortunately over by the following morning.

The traditional “morning milling around” ceremony took place at the finely appointed Laune Bridge House, adorned with evidence of occupation by a Dutch coleopterist. Wisely or wrongly our carload elected [I was the driver] to travel far in the hope of detecting good sites for others – or perhaps to persuade them to stay in and around the Killarney National Park. The latter won the vote as it soon became clear that water beetle habitats were not at their best. Valencia Island yielded Ochthebius lejolisii Mulsant & Rey in a rockpool, and Lough Currane was notable for the abundance of Gyrinus aeratus Stephens and the presence of G. distinctus Aubé. We did enjoy stunning views though, particularly the rock strata of Coomcallee beyond Lough Isknagahany, which had a water temperature of 27°C.

ADDRESSES The addresses of authors of articles and reviewed works are mainly given at the end of this issue of Latissimus. The address for other correspondence is: Professor G N Foster, 3 Eglinton Terrace, Ayr KA7 1JJ, Scotland, UK – latissimus/at/btinternet.com
This meeting might have been named in honour of Edwin Bullock (1879-1965). Born in London he spent the last fifty years of his life in Ireland and collected insects in the Muckross Estate area on every day when the weather permitted. He ran a hotel at Flesk View House, Muckross along the lines of Fawlty Towers (see Beirne 1985), “invariably perplexed and hurt” when guests left after a day. He recorded all too many beetles not seen since then: Bidessus minutissimus (Germar), Hydraena minutissima Stephens, H. pulchella Germar, H. pygmaea Waterhouse, Donacia sparganii Ahrens, Longitarsus nigerrimus (Gyllenhal), and Bagous limosus (Gyllenhal). The story goes that the burgeoning population of Killarney resulted in sewerage overwhelming the River Flesk where it enters Lough Leane, one of Bullock’s favourite sites, certainly endangering two of the Hydraena. Fortunately one of Bullock’s beetles, Plateumaris bracata (Scopoli), was refound at Dinish during our meeting and where he had last seen it in 1933.

MacGillicuddy’s Reeks were climbed by the more adventurous but the cirque lakes proved unproductive. Kevin Scheers and Johannes Bergsten fared better later on the lough-studded area of the Caha Mountains in West Cork with Boreonectes, the precise name of which is no longer in doubt following “the treatment” by Robert Angus.

KOLEOPTEROLOGISCHE RUNDSCHAU 88

Just for once this issue has not much on Palaearctic water beetles but there are still some important papers.

NEW CALEDONIAN HYDATICUS

Hydaticus manueli is newly described and fully illustrated as a member of the *H. sexguttatus* group.

CHINESE HALIPLIDAE

The number of Chinese species has gone down to 27 from 29 in the last catalogue because of synonymies in the subgenus *Liaphlus* based on recognition of the variability in the left paramere in *Haliplus abbreviatus* Wehncke.

ANGIOCHTHEBIUS

The species in this new subgenus come from Argentina and Chile, and correspond to the *Gymnochthebius plesiotypus* group of Phil Perkins.

AGRAPHYDRUS IN THE SUBCONTINENT

Harry G. Champion (or Champion the Wonderhorse, as he was known in the lower circles in the Natural History Museum, London) was a forestry officer in India and collected the first *Agraphydrus* between 1912 and 1932. Forty-six species are now known, 36 of them newly described. Six of the seven species known from Sri Lanka are endemic there. This giant paper is copiously illustrated and features drawings of the extent of pubescence on all the femora, rather like in *Anacaena*.

AUSTRIAN DONACIA

Donacia malinovskyi Ahrens and *D. tomentosa* Ahrens are amongst the chrysomelids recorded in this paper.

HEINRICH SCHÖNMAN 1948-2017

This appreciation of Henrich Schönmann’s work includes a list of the beetles he described as new, 49 species of the hydrophilid genus *Pelthydrus* d’Orchymont.

ITALIAN SPRINGS – ONE ELMID

Twenty-six taxa were recorded in two lowland springs in the Ticino valley. These included *Macronychus quadriruberculatus* Müller and some scirtid larvae. The author for correspondence is Daniele Paganelli.

HYDROGLYPHUS HAMULATUS IN THURINGIA
Two days' fieldwork in Thuringia yielded 57 species of water beetle under the guidance of Ronald Bellstedt. The best species was the hamulatus found in a quarry pond also known for the occurrence of Ochthebius nanus Stephens, but possibly the most interesting site was the shooting range of BdMP (Bund der Militar und Polizeischutzen) at Kriegberg, where one can also drive a tank, as here with Ronald.

FRACTAL HABITAT STRUCTURE IN POLISH LAKES
This study is based on the way in which acid lakes change as the Sphagnum mat grows, with increasing complexity to mosaic-like vegetation structures. This 12-year long study on the succession of water beetles has concerned over 40 lakes. Species richness and abundance increase in parallel to the change in vegetation structures expressed as fractals. There is a negative correlation between body size and abundance and an increase in beetle density is balanced by a change in the size of individual constituents. Thus biomass remains constant regardless of the fractal structure.

BEETLES ON DISPLAY, LONDON 2017
Among the beetles on display at 2017 NENHS Meeting were Berosus affinis Brullé, B. signaticollis (Charpentier), Hydraena nigrita Germar, H. rufipes Curtis, Donacia clavipes Fab., D. simplex Fab. and D. semicuprea Panzer, all from England. Also on show was Sphaerius acaroides Waltl, a first for Ireland in County Fermanagh, and the prize-winning Phytotelmatrixich osopaddington Darby and Chaboo, a ptiliid from water-filled hollows in leaves and bracts of ginger plants in Peruvian rainforest. Roger Booth compiled that part of the report dealing with beetles.

CHRYSOMELIDAE ILLUSTRATED

Some might remember the weevils book from the same authors (see *Latissimus* 30 14), at one time available for under £40. This book takes the standard even higher and no-one should be put off by the price or the language. All species of leaf beetle are beautifully and usefully illustrated. Genitalia are depicted for many genera including *Donacia*, *Galerucella* and *Altica*. One must remember that only the (huge!) fauna of Baden-Württemberg in south-west Germany is covered, so boreal and Atlantic species may be missing. Anyone with a smattering of German will find the text useful too, with interesting coverage of natural enemies, subfossils, and the chemistry of defensive substances as well as the more usual information on habitats, life-cycles and conservation. We are grateful to Ronald Bellstedt for the Club copy.

FLOWER-INHABITING HYDROPHILIDS

When Michael Hansen reviewed *Cycreon* d’Orchymont in his treatise on Hydrophilidae he was obliged to remark “Habitat unknown” for the one species known from Sumatra. However, recent studies on the pollinating insect associated with Araceae revealed, in the first paper, an abundance of two subspecies of the newly described *Cycreon floricola*, differing in their distribution on the flowers of different species. They were found to feed on the exudate of the interpistillar staminodes (you’ll need a botany textbook!), to mate on the pistillate zone and to stay inside the lower spathe chamber – and that they carried significant amounts of pollen and had some in their guts alongside some unidentified matter. But larvae were not to be found, and the suggestion is that these might be associated with the decaying flowers. The second paper deals with the New Zealand endemic genus *Rygmodus* White, belonging to the subfamily Cylominae, an early divergent group in the same lineage as Sphaeridiinae. The adults visit flowers and feed on pollen, with appropriately modified mouthparts, whereas the larvae are found along the sides of streams and would appear to be ambush-type predators as with most other hydrophilids.

NEW ASIAN Berosus

Berosus (*Enoplurus*) *litvinchuki* is described from Tajikistan, Uzbekistan, Kazakhstan and Azerbaijan. It belongs to the *Berosus spinosus* group, which is re-keyed. It is closest to *B. asiaticus* Kuwert.

NINE INDIAN COPELATUS

The nine species include three newly described ones, C. deccanensis, C. maushomi (right) and C. bezdeki (left). Seven new synonymies later, we have nine species in this west-central Indian state, and the authors have supplied a key to as well as a review of each species. C. bezdeki is a typically stylish Copelatus whereas C. maushomi has the trappings of subterranean life, small eyes, no colour and narrowness: it is named after the monsoon and was probably flushed out of a mountain stream (120 km NE of Mumbai). Jiří Hájek, who is the author for correspondence, kindly supplied the habitus photographs for use in Latissimus.

AFRICAN TEMPORARY WATERS REVIEW

This review includes the idea that most species occupying temporary water are habitat generalists, and this explains why endemism appears to be low. The stated caveat is “except for a few specialist groups” and these certainly include many of the beetles. The authors (or author, i.e. David Bilton) cite, for example, the wingless haliplid Algophilus lathridoides Zimmermann as a Cape endemic known from slightly brackish flood pools and presumably only able to disperse in floodwater, the only southern African Helophorus, aethiops J. Balfour-Browne, which is common in temporary ponds in the winter rainfall zone, and of course, the rockpool hydraenids in Prosthetops.

SWAN NEST BEETLES

An abandoned nest of mute swans (Cygnus olor (Gmelin)) in Cheshire, England, yielded amongst other beetles Cercyon analis (Paykull), C. bifenestratus Küster and Tanysphyrus lemnæ (Paykull), with bifenestratus being new for Cheshire.

LEIELMIS AGAIN

The elmid genus Leielmis was recently reviewed by David Bilton (see Latissimus 40 32). The new species, characterised by the spine on the inner edge of the hind tibiae, was detected when the revision was in press. It was found in company with L. gibbosus Bilton in a stream at high altitude in the Hexrivier mountains, South Africa.

SUBTRIBE DERONECTINA – A MAJOR OVERHAUL

Kazimierz Galewski’s name will be for ever associated with this subtribe almost by accident. In 1994 he used the term Deronectini in a key to the tribes of the subfamily Hydrocorinae. That key referred to figures of Oreodytes species and Deronectes latus (Stephens), and article 36 of ICZN 1999 leads us to Deronectina with type genus Deronectes. But Galewski did not deal with any of the other genera now included in Deronectina. The name was first used by Anders Nilsson and Robert Angus in 1992 in their review of the Deronectes–group of genera, but they did not include Oreodytes in Deronectina. Kelly Miller and Johannes Bergsten (2014) formally recognised Deronectina on the basis of a molecular phylogeny of the Dytiscidae (Ribera et al., 2018). These 20 genera currently include 194 species and 13 subspecies.

Amurodytes Fery & Petrov – for A. belovi Fery & Petrov from Eastern Russia. [not to be confused with the American Amarodytes Régimbart]

Boreonectes Angus – type species Deronectes griseostriatus De Geer, and nine other montane species in the Neartic and Palaearctic.

Clarkhydrus n. gen. – type species Hydroporus roffi Clark, and nine other species in North America south to the Neotropical in Mexico.

Deronectes Sharp – type species Hydroporus latus Stephens, and 58 other species in eight species-groups, all in the Palaearctic.

Deuteronectes Guignot, restored as a Nearctic genus with Hydroporus picturatus Horn as type species, plus D. angustior (Hatch).

Hornectes n. gen. for a single Nearctic species originally described as Hydroporus quadriramaculatus Horn.

Iberonectes n. gen. for the Iberian Deronectes bertrandii Legros.

Larsonectes n. gen. for the Canadian Potamonectes minipi Larson.

Leconectes n. gen. for what was originally described as Hydroporus striatellus LeConte, a montane species in North America reaching to the Neotropical in Mexico.

Mystonectes n. gen. – type species Deronectes neomexicanus Zimmerman & Smith, and two other species in the neomexicanus-group in the Neartic and Mexico in the Neotropical, plus two species in the coelamboides-group in the south-western USA. The new name implies some mysteries still to be resolved in this genus.

Nebrioporus Régimbart – type species Hydroporus kilimandjarenis Régimbart, with 56 other species in Africa, the Palaearctic and North America. Owing to the difficulties in obtaining fresh N. kilimandjarenis from Mount Kilimanjaro Ignacio and his co-workers in Barcelona managed to get a fragment of gene H3 from a museum specimen and found it identical to the equivalent sequence in N. abyssinicus (Sharp). In the absence of any possibility of contamination in the laboratory the current placement of this species fully supports earlier proposals about synonymy. N. kilimandjarenis is unusual in the genus in that the scutellum is partly visible, though unfortunately this does not show in Félix Guignot’s (1959) depiction. The treatment of this genus is accompanied by substantial notes, perhaps the most important being to recognise continuing uncertainties about the position of N. canaliculatus Lacordaire.

Nectoboreus n. gen. with type species designated as Hydroporus aequinoctialis Clark, and two other species from south-western USA to Mexico.

Nectomimus n. gen. with sole and type species Oreodytes
okulovi Lafer, a Siberian and Far East species looking like the short form of what until now we knew as Oreodytes.

Nectoporus Guignot, resurrected as a North American and Palaearctic genus with the type species *Hydroporus abbreviatus* Fall and eight other species. These include the Holarctic *Nectoporus sanmarkii* (Sahlberg), common in western Europe.

Neonectes Balfour-Browne, resurrected as a genus with Jack Balfour-Browne as the authority because he designated *Hydroporus natrix* Sharp as type species, whereas the originator of the name *Neonectes*, Alois Zimmermann, did not. The two other species are *N. babai* (Satô) and *N. jakovlevi* (Zaitzev), all three being found in the east of the Palaearctic.

Oreodytes Seidlitz, redefined to cover only the “longer Oreodytes” of the past, with type species *Hyphrydus borealis* Gyllenhal in Sahlberg (= *Dytiscus alpinus* Paykull) as designated by Frank Balfour-Browne (1936). This now has 14 species in three species-groups, all with Nearctic and Palaearctic representatives.

Scarodytes des Gozis, type *Dytiscus halensis* Fab., with eleven species in Europe, north Africa and Asia east to Iran.

Stictotarsus Zimmermann reinstated as a genus, having originally been described as a subgenus, including only *duodecimpustulatus* Fab., *maghrebinus* Mazzoldi & Toledo and *procerus* Aubé, as conceived by Anders Nilsson and Robert Angus (1992), *duodecimpustulatus* being the type species as designated by Jack Balfour-Browne (1944). These three species cover much of Europe and north Africa.

Trichonectes Guignot for the Moroccan and Spanish *T. otini* (Guignot), originally described as a *Potamonectes*.

Zaitzevhydrus n. gen. for Zaitzev’s *Hydroporus formaster* from the eastern Palaearctic.

This analysis is accompanied by a key and habitus images, plus photographs, stereoscans and line drawings of structures. This huge piece of work must surely draw a line following on the many twists and turns taken by “Deronectes” in the past. However, some workers may have reservations about the large number of monospecific genera. An earlier treatment based on larval setation (Yves Alarie et al., 1999) had suggested that the Australian *Antiporus* Sharp might be linked to the *Deronectes* group, but Ignacio has pointed out that *Antiporus* is among the outgroups in Fig. 29C, eliminating the possibility of Southern Hemisphere representatives of Deronectina.

CUBAN METHOD
This fascinating book is worth downloading from the web to see the range of wildlife in Cuba and the ways in which it can be monitored. It is reassuring to see a D-shaped net with a Balfour-Browne rim being deployed alongside a white tray. The cited literature gives some good guidance on what is available relevant for Cuba.

NEOTROPICAL DYTISCIDAE KEYS
One is always wary of these great compendia. They usually cost a lot for material much of which will never be consulted, and they go out-of-date with the release of further editions, most of which involve no changes to the parts of interest. However, it is good nowadays to get the chunk that you need online – and here is a case in point. This is a well illustrated set of keys down to genus level for adults and most larvae. There are some changes required based on Fery & Ribera (2018 – see this Latissimus 7-8). Boreonectes must be replaced by Nectoboreus, and former Neotropical members of Stictotarsus are now in Leconectes and Mystonectes, the question being whether the Neotropical representatives still work in the keys.

OCHTHEBIINI GETS THE TREATMENT
The new phylogeny of this tribe is based on genetic analysis of 186 species. Six genera are recognised:- Meropathus Enderlein, Ochthebius Leach, Proochthebius Perkins, Prototympanogaster Perkins, Tympallopatrium Perkins and Tympanogaster Janssens. Ochthebius now has nine subgenera:- the newly described Angiochthebius Jäch & Ribera from South America, Asiobates Thomson, Aulacochthebius Kuwert, Cobalius Rey, Enicocerus Stephens, Gymnanthelius Perkins from Australia, Gymnochthebius d’Orchymont from Australia, PNG and America, Hughleechia Perkins from Australian rockpools, and finally the subgenus Ochthebius Leach with 17 species-groups. The authors take the opportunity to promote two subspecies to specific rank, O. fallaciosus Ganglbauer, separate from O. viridis Peyron, and O. deletus Rey, separate from O. subpictus Wollaston. The author for correspondence is Ignacio Ribera.

CHINESE LIMNICHID
There is no mention of an aquatic habitat in connection with Caccothryptus yunnanensis, but the genus is generally known in wet dead wood in forest streams. This new species belongs to the testudo species-group.

DOROTHY J. JACKSON FRES FLS, SCOTTISH ENTOMOLOGIST: A BIBLIOGRAPHY

Jack R. McLachlan

Dorothy Jean Jackson FRES FLS (1892-1973) should be familiar to anyone interested in water beetles. She published prolifically on the ecology, distribution, flight capacity, and parasites of water beetles, and made especially important contributions to our knowledge of dytiscids. Lees (1974) provided a very brief and somewhat accurate obituary. I am currently preparing a more comprehensive biography of her and would be grateful to receive any notes or anecdotes from those that knew or met her.

Foster (1991), at the request of the late Hans Schaeflein, was the first effort in putting together a publication list. Here I provide a more extensive bibliography of her work that is almost certainly incomplete, but I think includes most of her scientific output between 1907 and 1973. Her first paper was published when she was 14 years old, and her last was completed by Jack Balfour-Browne and published posthumously. Unsurprisingly, there are gaps in her publication list between 1914-1918 and 1939-1945. She had a laboratory at her home in St Andrews, but it was dismantled during the second world war, and she had all but given up entomology until D’Arcy Wentworth Thompson asked her to lecture for him. In preparation for these lectures, she bought her first aquatic net in September 1945. In 1948 Frank Balfour-Browne suggested she start an account of the water beetles of Fife and Kinross, and she began collecting in October of that year. She led work parties in collecting, drying, and packing of moss during the war, and I wonder if this influenced her new post-war interest in dytiscids and other water beetles! Many of her papers are hard to come by, so I can provide copies of any of the works listed below to anyone interested.

1908a. Lepidoptera from East Ross and other localities in the North of Scotland. *Annals of Scottish Natural History* 65 53-54
1908b. *Amblyptilus punctidactylus*. *Annals of Scottish Natural History* 65 54
1909b. List of Lepidoptera captured recently in Rossshire. *Entomologist's Record and Journal of Variation* 21 115-117, 176-181, 212-216
1910c. A few days amongst the Lepidoptera of Caithness. *Entomologist's Record and Journal of Variation*. 22 223-224
1910d. Notes on the Lepidoptera of the Scottish Highlands. *Entomologist's Record and Journal of Variation* 22 130-134

1918. Notes on the aphis of Ross-shire, with descriptions of two species new to science. *Scottish Naturalist* **76** 81-91, 144
1919. Further notes on aphis collected principally in the Scottish Highlands. *Scottish Naturalist* **93** 157-165
1921b. Notes of the distribution of weevils of the genus *Sitona* in the North of Scotland. *Scottish Naturalist* **120** 178
1922a. Further observations on *Sitones lineatus* L. *Annals of Applied Biology.* **9** 69-71
1922c. Notes of aphis from Sutherland. Part I. *Scottish Naturalist* **123** 51-59
1922d. Notes of aphis from Sutherland. Part II. *Scottish Naturalist* **125** 85-92
1934a. Parasites of weevils of the genus *Sitona*. *Scottish Naturalist* **207** 75-79
1934b. Notes on parasites of *Abraxas grossulariata* in Fife. *Scottish Naturalist* **209** 143-147
1950b. Rare moth found. *St Andrews Citizen*, 26th August 1950, p. 5
1954c. Notes on water beetles from the island of Raasay. *Scottish Naturalist* **66** 30-34
1955a. Further notes on beetles from the island of Raasay, and some Scottish records of Donaciinae. *Scottish Naturalist* 67 34-39
1955c. Untitled [wing size variation in *Caraphractus cinctus* Walker]. *Proceedings of the Royal Entomological Society of London (C)* 20 36
1956c. Notes on Hymenopterous parasitoids bred from eggs of Dytiscidae in Fife. *Journal of the Society for British Entomology* 5 144-149
1956d. The capacity for flight of certain water beetles and its bearing on their origin in the Western Scottish Isles. *Proceedings of the Linnean Society of London* 167 76-96
1956e. Dimorphism of the metasternal wings in *Agabus raffrayi* Sharp and *A. labiatus* Brah. (Col. Dytiscidae) and its relation to capacity for flight. *Proceedings of the Royal Entomological Society of London (A)* 31 1-11
1957. A note on the embryonic cuticle shed on hatching by the larvae of *Agabus bipustulatus* L. and *Dytiscus marginalis* L. (Coleoptera: Dytiscidae). *Proceedings of the Royal Entomological Society of London (A)* 32 115-118
1958b. Observations on *Hydroporus ferrugineus* Steph. (Col. Dytiscidae), and some further evidence indicating incapacity for flight. *Entomologist’s Gazette* 9 55-59
1958d. A further note on a *Chrysocharis* (Hym. Eulophidae) parasitizing the eggs of *Dytiscus marginalis* L., and a comparison of its larva with that of *Caraphractus cinctus* Walker (Hym. Mymaridae). *Journal of the Society for British Entomology* 6 15-22
1958e. Egg-laying and egg hatching in *Agabus bipustulatus* L. with notes on oviposition of other species of *Agabus* (Col. Dytiscidae). *Transactions of the Royal Entomological Society of London* 10 58-80
1958f. Observations on the biology of *Caraphractus cinctus* Walker (Hymenoptera: Mymaridae) a parasitoid of the eggs of *Dytiscus marginalis* L. Methods of rearing and numbers bred on different host eggs. *Transactions of the Royal Entomological Society of London* 110 533-554
1959a. Observations on three gynandromorphs of *Caraphractus cinctus* Walker (Hym., Mymaridae), and notes on antennal variation in this species. *Entomologist’s Monthly Magazine* 95 198-203
1959b. The association of a slime bacterium with the inner envelope of the egg of *Dytiscus marginalis* (Coleoptera), and the less common occurrence of a similar bacterium on the egg of *D. semisulcatus*. *Quarterly Journal of Microscopical Science* 100 433-443
1960a. Revised determination of a Eulophid (Hym., Chalcidoidea) bred from eggs of *Dytiscus marginalis* L. *Entomologist* 93 181
1960b. Fertile eggs laid by females of *Dytiscus marginalis* long separated from males. *Entomologist’s Gazette* 11 204-206
1961d. *Coelopa frigida* (Fabricius) (Diptera, Coelopidae) swarming on a January night on windows at St. Andrews. *Entomologist* **94** 166
1963. Diapause in *Caraphractus cinctus* Walker (Hymenoptera - Mymaridae), a parasitoid of eggs of Dytiscidae (Coleoptera). *Parasitology* **53** 225-251

AULONOGYRUS OUT OF AFRICA

Aulonogyrus Motschulsky has more than 50 species, until this analysis, spread over five subgenera. It has high endemicity in southern Africa, with other endemics scattered around the southern hemisphere. Ancestral range reconstruction indicates that the genus originated in Africa with several separate Cenozoic dispersals to Madagascar, plus movements into the Palaeartic and Oceania. This reappraisal has resulted in recognition of only two subgenera, *Aulonogyrus* s. str. with four species in the Palaeartic, Australia and New Caledonia, and *Afrogyrus* Brinck, with 50 known species found mainly in Africa, four in Madagascar and *A. obliquus* Walker in India and Sri Lanka. *Aulonogyrus* s. str. (illustrated, courtesy of Grey) has a strigose labrum whereas this is mostly smooth in *Afrogyrus*.

TROGLOMORPH COPELATUS

The new species is described from a Brazilian cave. It is the second cave-dwelling copelatine diving beetle after *Exocelina abdita* Balke et al., and has the troglomorphic trappings of blindness, narrowness and winglessness, plus long hairs and the elytra being fused. The female genitalia are added to the more normal range of illustrations.

SARDINIAN BEETLES
The following are reported from a mountainous area near Cagliari in the south of Sardinia: Haliplus lineatocollis (Marsham), Agabus bipustulatus L., A. didymus (Olivier), A. nebulosus (Forster), Colymbetes fuscus (L.), “Meladema coriacea” (which must be M. lepidoptera Bilton & Ribera - see Latissimus 40 29), Dytiscus pisanus Castelnau, Stictonecetes optatus (Seidlitz), and Deronectes moestus (Fairmaire).

This is from the first volume of Naturalistica, produced as part of by Mediterraneaonline. The editor says “L’iniziativa è rivolta principalmente a giovani ricercatori, laureandi, dottorandi e a chiunque si voglia cimentare in pubblicazioni dalla valenza scientifica.” Perhaps this will be the first scientific journal where one must offer proof of age?

PHILOLACCOLILUS ON THE NEW GUINEA ANVIL
Well, if the authors can have a rather cryptic title then that can be matched here. This is a paper about the diving beetle Philolaccolilus ameliae Balke et al. This complex ranges across New Guinea with the analysis here indicating that it comprises three or four species. The authors work on the basis of Richard Southwood’s much-cited Habitat Template (originally Templet, a word chosen to emphasise archaism and flexibility). Southwood intended to provide a framework in which to classify “the almost infinite variety of life-history features” in terms of species traits and habitats. The pattern of connectivity between the Philolaccolilus species fits overall with the idea of stability provided by running water, but a deeper analysis of two clades shows a greater complexity based on “dispersal across rugged mountains and watersheds of New Guinea up to 430 km apart”. Ruggedness echoes the use of Southwood’s anvil metaphor “I wished to develop the idea that the features of an organism’s life history had been forged by evolution on the anvil of its habitat”. The authors liken the possible evolution of some Philolaccolilus in tropical streams to what Ignacio Ribera et al. (2011) showed as a way for Haenydra to have evolved in European streams.

TUSCAN ADDITIONS
Ninety-five taxa are discussed, nine of them being considered unlikely in Tuscany - Helophorus longitarsis Wollaston, H. nanus Sturm, H. pallidipennis Mulsant & Wachanru, Hydrochus nitidicollis Mulsant, Laccobius sinuatus Motschulsky, L. minutus (L.), Paracymus scutellaris (Rosenhauer), Cercyon convexiusculus Stephens, and C. tristis (Illiger).

BREATHING UNDER WATER
Siegfried Kehl and Konrad Dettner (2009) (see Latissimus 27 37) demonstrated the fine structure of the tracheated setal gills on the elytra of Deronectes aubei Mulsant. Under the ordinary microscope these can be recognised by their spoon-shaped setae laying flat on the surface. The current paper compares the gill density between Deronectes species. Higher densities were associated with the species living in cold, stable, permanent flowing waters as opposed to those species living in warmer habitats. This makes sense on the basis that warm water species often have to survive in pockets of stagnant still water where surfacing provides the best way of breathing. On the other hand underwater gas exchange is enough to let the cold climate species meet their metabolic needs without risking predation or displacement when surfacing.

BARBELLION – A SERIOUS MAJOR OR A NEAR MISS?
Wilhelm Nero Pilate Barbellion was the nom de plume of Bruce Frederick Cummins (1889-1919), an entomologist working at the Natural History Museum in London. Barbellion was the name of his favourite pastry shop on Gloucester Road. The diaries, dominated by the impact of Multiple Sclerosis, were published soon after his death and have recently been republished in Penguin Classics (2017. The Journal of a Disappointed Man. ISBN 978-0-241-29769-8). Cummins’s other published interest concerned lice, all too rife in the Great War. On 2 July 1915 he recalled spending “the afternoon at the Royal Army Medical College in consultation with the Professor of Hygiene. Amid all the paraphernalia of research, even when discussing a serious problem with a serious Major, I could not take myself seriously.” Frank Balfour-Browne’s journals are silent around that time, most probably because he was serving in the Sanitary Company of the Royal Army Medical Corps. His autobiography gives him lieutenant status so he was not the “serious Major” but you never know, he may have been around. Cummins/Barbellion could be more serious about nature, describing the “horrificness” of a supposedly bottomless limestone quarry pond...."Everything is absolutely still, air and water are stagnant. A large Dytiscus beetle rises to the surface to breathe and every now and then large bubbles of marsh gas come sailing majestically up from the depth and explode quietly into the fetid air.”

GERMAN DRAINS
Based on a survey of 124 Brandenburg sites this paper provides a good review of the importance of drainage ditches for water beetles in Germany. Thirteen per cent of the species endangered in Germany were found along with 18% of rare and very rare species. In particular, Rhantus bistriatus (Bergsträsser), Colymbetes striatus (L.) and Hydaticus continentalis Balfour-Browne were found. Predaceous species with reduced flight ability dominated the beetle fauna. Partial redundancy analysis indicated the relative importance of fish abundance, water depth/temperature (inversely related), conductivity and pH, but the authors point out that a contributing factor might not be amongst the variables measured.

BRITISH & IRISH HYDROPHILOIDEA

Ignore what it says on page 1 – this really is water beetles Atlas 2, but with added terrestrial Helophorus and Sphaeridiinae. It is based on about 149,000 records of Hydrophiloidea for 104 species, all of them known for Britain. And including 70 species known from Ireland, 52 from the Isle of Man and 63 from the Channel Isles. Hopefully some readers will derive evocative pleasure from habitat photographs, few of which were taken by expert photographers. Some maps are more complete than others. Those for the terrestrial species benefited from a late surge of records called in by sending a request to beetles-britishisles@yahoogroups.com. We even got some usable Citizen Science-type records. The opportunity was taken to upgrade Table 1 of Atlas 1, which had some unfortunate omissions – so the new Table 1 covers both Hydradephaga and Hydrophiloidea. Some issues were ducked. Hydrobius fuscipes (L.) is still treated as a complex, because, after a draft was written mapping H. rottenbergii Gerhardt and H. subrotundus Stephens, it became clear that more genetic analyses were required to establish just how many species there really are. Similarly, there are still problems with the Megasternum species-pair, for which individual maps would be misleading at this stage. It is, however, worth pointing out that the first observation in Britain on what must be H. rottenbergii is based on specimens taken by the great dipterist, George Verrall, at Lewes in East Sussex, with one possible example found in Bolton Museum by Don Stenhouse.

We don’t usually go into this level of detail regarding a book but it must be recorded that Rebecca Farley-Brown, of the Field Studies Council, was saintly in her patience when getting this one into being. Sanctity also surrounds Jonty Denton for latterly admitting that his Milton Lockhart Cryptopleurum was a large minutum (Fab.) rather than crenatum (Kugelann), so crenatum has yet to be found in Scotland. Any other mistakes or additions, please contact GNF. Manfred Jách has already done so, among other things spotting two dates for the last record of Spercheus emarginatus in England, 1956 being the right one, not 1954 as stated on p. 8.

VEGETATION AFFECTS BRAZILIAN ELMIDS

The possible impact of riparian vegetation of elmid populations was assessed in a Brazilian stream complex by comparing plant cover less than 5 metres, 5-15 m, 15-30 m and over 40 m wide on both sides. Larvae of Hexanchorus Sharp, Macrelmis Motschulsky, Microcylloepus Hinton and Xenelmis Hinton were associated with narrower strips but there was no other relationship established based on extent of plant cover. Larvae of Heterelmis Sharp, Hexacylloepus Hinton, Hexanochorus and Phanocerus Sharp could be linked to the presence of leaf litter. Some genera could also be related to the extent of exposed gravel.

DYTISCID DIVERSIFICATION NOT RELATED TO BODY SIZE

Dytiscidae are used as a group with over 4,300 species and 50-fold variation in body size to investigate the extent to which diversification is related to a change in body size. In contrast to most animals studied previously, dytiscid body size evolution follows an early-burst model, consistent with an explosion of body sizes during the Early Cretaceous, since when body size ranges in the different branches of the family seem to have remained relatively constant. Ancestral body size is estimated to have been small (ca. 5.5 mm long) with eight subsequent major changes in size, some to smaller and some to larger beetles. Rates of change in body size could not be related to species diversification, disposing of any thought that diversification simply arose through beetles of different sizes exploiting different niches. Nor were there any significant differences in diversification rates between species of running and standing water, with the ancestral habitat being in standing or lentic water (the opposite of what has recently been estimated for dragonflies), and seventeen separate transitions to running water and only two reversions to standing water, endorsing the view that running water species have to be more specialised. It seems true that two main shifts in body size, at the base of the Agabinae and at the split between Cybistrinae, Laccophilinae and Copelatinae, could be linked to a lentic- lotic change but there are six others that could not.

GLOUCESTERSHIRE BEETLES

This is a massive update of David Atty’s 1983 publication of the beetles of this English county. It includes records for six Gyrinidae, 14 Haliplidae, both the usual Noterus, Hygrobia hermanni (Fab.), 60 Dytiscidae, 16 Helophoridae, Georissus crenulatus (Rossi), three Hydrochidae, 47 Hydrophilidae, 15 Hydraenidae, 14 Scirtidae, 9 Elmidae, 3 each Dryopidae and Heteroceridae, 16 Donaciinae plus many other wetland leaf beetles and weevils. Gloucestershire does not fare well on bagoine weevils, only Hydronomus alismatis Marsham being recorded, once in the gizzard of a blue tit - Cyanistes caeruleus (L.) – by Monica Betts! The extensive and detailed lists are alleviated by some colour photographs, but none is of a water beetle. Some coleopterists have visited Gloucestershire rarely, being plagued by a nursery rhyme for many years, an added incentive for acquiring a Chair (please excuse this lapse).

DYTISCUS LATISSIMUS IN POLAND

Three records are provided from 2015 in the Dobrzyńskie Lakeland.

MYXOPHAGA PHYLOGENY AND THE SPHAERIUS HEAD
This study builds on earlier analyses of Myxophaga, with 98 adult and larval characters, the Lepiceridae being more basal than the Sphaeriidae (Sphaerius), then the Hydroscaphidae (Hydroscapha – Scaphydra – Yara - Confossa), and then the Torridincolidae (Deleva, Satonisius, Ytu, lapir, Claudiella, Torridincola, Incollorrida). The detailed musculature of the Sphaerius head is given, with reconstruction of the brain sections showing its partial intrusion into the prothorax. The author for correspondence is Rolf Beutel.

DERONECTES TOLEDOI
D. toledoi Fery et al., 2001 is endemic to eastern Turkey. This study is mainly concerned with water chemistry but several accompanying dytiscids are identified to species: - Agabus paludosus (Fab.), Ilybius fuliginosus (Fab.), Hydroporus thoracicus Guéorguiev, Bidessus unistriatus (Goeze) and Laccophilus minutus (L.).

THE DEATH OF ECOLOGY?
The first paper is a fairly well balanced discussion of the benefits and problems of conventional biological monitoring versus the use of DNA found in the water, “(e)DNA”. Thirty-three authors from 26 institutions recommend a two-step process, use of barcoding in association with existing biological indexes of water quality and then converting to new indices based entirely on metabarcoding. No need for any more fieldwork. A drone dips into the site and zooms off to deliver the water samples into the machine which extracts, amplifies and analyses eDNA, and presumably a robot writes the report on the basis of which site A survives and site B can be drained. How many of these 33 people will keep their jobs? And how many ponds will survive? And it is not just them of course. There will be no need for taxonomists, for microscopes, for books, for vouchers, for museums. OR, of course, all those redundant scientists can stop worrying about ranking statistics then they might spend more time understanding processes and raise ecology to new heights.

The authors are clearly aware of several of the basic limitations to use of eDNA, e.g. some organisms being more DNA-leaky than others; the assumption that individual sequences can be grouped into Molecular Operational Taxonomic Units that might be linked to individual species; the best choice of primer for amplification; the huge gaps in our knowledge of DNA sequences associated with some groups. Some of these can be avoided by metabarcoding alone, unfettered by any knowledge of the basic biology of species or their interactions with each other.

A CASE FOR SMALL WATER BODIES
This paper will certainly get cited, though 22 authors does seem to be a little excessive to put across some fairly obvious ideas about the importance of ponds and headwater streams. Is there really an alternative proposal on offer from 22 lake and river piscophiles? There are some useful mini-reviews here but there are two main problems. Firstly headwater streams and ponds do not mix, approaches to their conservation being rather different and perhaps demanding separate presentations. Secondly, what is the target audience for “the options for restorative action”? Environmentalists – i.e. preaching to the converted? Policymakers? Farmers? The latter are unlikely to take kindly to the idea that they do not already calibrate fertiliser applicators or that they should “allow grassland field drainage systems to deteriorate”, though most farmers will be more than familiar with most of the other ideas. A farmer might question the supporting chart showing sheep needing access to rivers but not cattle. But the foodweb (above, right) is brilliant!

STREAM MACROINVERTEBRATE STUDY
Invertebrate responses, mainly the tendency to drift, were studied with alterations in siltation, nitrogen and phosphate using 3.5 litre mesocosm chambers. *Elmis aenea* (Müller) and *Limnius volckmari* (Panzer), 4.7% and 3.4% respectively of the total 17,000 animals sampled. However, they did not show the strong negative response to siltation evident in mayflies, the caddis *Micropterna* and EPT species (*Ephemeroptera, Plecoptera and Trichoptera*) overall.

BARCELONNETTE BEETLES
The water beetle fauna is listed from ponds and streams 1,125 to 1,543 metres above sea level near Barcelonnette. The list is limited, 27 species, but is interesting for the three species of *Dryops - similaris* Bollow, *striatopunctatus* (Heer) and *subincanus* (Kuwert) – also *Agabus laponicus* (Thomson) and *Auygles sericans* (Kiesenwetter). The aedeagophores of *D. similaris* and *D. griseus* (Erichson) are compared. Pierre notes *D. similaris* was mistakenly recorded from the Paris region as *D. griseus* (Queney, 2016 – see Latissimus 39 4). By way of balance GNF once took a male *griseus* in the Alpes-de-Haute-Provence (Lac des Eissaupres at 2,300 m asl on 15 July 2008).

DERONECTES ORIGINS

An analysis of four mitochondrial and two nuclear genes was used to discern the origins of four lineages of *Deronectes*. All species originated in southern Mediterranean peninsulas and were estimated to be of Pleistocene origin. In different glacial cycles it appears that populations finding themselves on the edge of newly deglaciated areas took advantage of improving ecological conditions to invade central and northern Europe. But when such favourable windows closed populations became isolated with closely related but distinct species locked together in the Anatolian, Balkan and Iberian peninsulas. The example figured here, thanks to PeerJ, shows the history of the *D. latus* group, with *D. latus* (Stephens) itself getting to Scotland, *D. angusi* Fery & Brancucci to Spain, *D. angelini* Fery & Brancucci to Italy and *D. toledoi* Fery, Erman & Hosseinie to Turkey.

Fifty-six of the 297 specimens used were tested for the presence of *Wolbachia*, the maternally transmitted parasitic bacteria that can moderate the patterns of mitochondrial DNA variability. *Wolbachia* was common, especially in the *D. aubei* group: mitochondrial and nuclear DNA sequences gave conflicting suggestions in this group but without a clearcut link to infection.

The author for correspondence is Ignacio Ribera.

AUGYLES CRINITUS IN POLAND

Augyles crinitus is newly recorded for Poland in a stream in the Słonne Mountains.

PEATLAND RESTORATION IN ENGLAND

This study was based on attempts to restore peat pool assemblages in the North and South Pennines in England, comparing the faunas of artificial and natural pools. The thinness of the comments on water beetles and the fact that GNF was thanked in the acknowledgements initiated a check on what had been sent in. Samain Ramchunder had a few beetles from running water but Jeannie Beadle generated records for about 24 common species associated with peaty habitats, rather more than the 11 taxa mentioned in the paper as secondary to the 28 chironomid taxa. Chironomids so much dominated the study that the authors did well to mention anything else. This underlines the difference between addressing conservation issues and trying to understand community processes, unless of course there is an organisation dedicated to asserting chironomid rights. Jeannie’s beetle list includes eleven species of *Hydroporus* but has few of the larger species, the only ones recorded being *Agabus bipustulatus* (L.), *A. congener* (Thunberg) and *A. guttatus* (Paykull). These Pennine peatlands have been degraded not just by drainage but also by nearly two centuries of exposure to human, in particular industrial, activity. Another indicator that the “undisturbed” sites are nothing like that is the near absence of Odonata, the normally ubiquitous *Pyrrhosoma nymphula* L. being the only species found, and that at just one site. It is too early to judge the value of restoration.

HERTFORDSHIRE BEETLES

JAMES T J 2018. *Beetles of Hertfordshire*. Hertfordshire Natural History Society. Available from the Society – the pre-publication price was £25 + £10 p&p www.hnhs.org/publications. A corrected pagination of the Contents page is available from the Society. Hertfordshire is the main county immediately north of London. It was one of the early hunting grounds of James Francis Stephens, whose image (see Wikipedia) looms darkly over the introduction to recording in Chapter 2. His records might have constituted the first county list for Hertfordshire but water beetles would hardly have featured in it. About a third of the water beetle records are from the late Dave Leeming (see *Latissimus* 40 26). Comparison with Gloucestershire (see p 17) indicates a draw: four Gyrinidae, 16 Haliplidae, both *Noterus*, *Hygrobia hermanni* (Fab.), 71 Dytiscidae, 13 Helophoridae, *Hydrochus angustatus* Germar, 54 Hydrophilidae, 12 Hydraenidae, 14 Scirtidae, 5 each for Elmidae and Dryopidae, 3 Heteroceridae, 13 Donaciinae plus many other wetland leaf beetles and weevils. Doubtful records are clearly identified. This is a nicely produced hardback with green and yellow head and tail bands plus a ribbon bookmark: it might even attract coffee table status (but with better content!) on the basis of the lavish scale and size, at 30 x 21 cm needing to sit on the outsize shelf. All good stuff, what with Yorkshire water beetles done recently (see *Latissimus* 39 31) that leaves only another 37 English counties to go.

NEW TURKISH DERONECTES

D. taron brings the known *Deronectes* species list to 59. It belongs to the *D. longipes* subgroup of the *D. parvicollis* species group. It was found in a shallow stream in the east of Turkey in the Muş province.

ILYBIUS NEGLECTUS: TO BE, OR NOT TO BE... BELGIAN
Kevin Scheers

Ilybius neglectus (Erichson, 1837) was first cited as Belgian by Preudhomme De Borre (1890) in his list of beetles of the provinces of East- and West-Flanders, based on a specimen collected at Bois de la Douve near Ploegsteert by (M. Lethierry). Van Dorsselaer (1957) repeated this record and added a new record from Kalmthout, based on a specimen he collected himself on 27.IV.1947. Dopagne (1995) excluded the old record by De Borre (1890), of which there is no specimen in any of the known collections, and only cites the record from Van Dorsselaer (1957). During the revision of the collections present in the Royal Belgian Institute of Natural Sciences (RBINS), I relocated the specimen caught by Van Dorsselaer in 1947. To my surprise the specimen, a male which was already dissected, turned out to be *Ilybius montanus* (Stephens, 1828). In my own collection, however, there is one specimen of *I. neglectus*, which I collected myself in Marais d’Harchies on 22.III.2015. The species can stay on the Belgian species list, as it has since 1890, but should be removed from the Flanders list and instead be added to the species list of the Walloon region. However, the presence of *I. neglectus* in Flanders is not unlikely and populations exist in the Netherlands close to the border with the provinces of Antwerp and Limburg.

Received July 2018

TWO-STRIPES FOR THE MILITARY

A photograph of *Graptolebetes bilineatus* (Sturm), taken by Robert Aquilina, turned up in an article on the Fingringhoe Firing Ranges in North Essex. It seems that these were part of samples of eighteen species taken by Iain Perkins in May 2017. There are already records for the two-striped diving beetle in the same hectad (TM01) but it is great to see the Military taking an interest. The reporting officer for the article is Major (Retd) Udaibahadur Gurung, MBE.

GURUNG U 2017 Essex Fingringhoe Ranges. Sanctuary 46 97.

ALBUFERA, VALENCIA

New information is given on the water beetles and bugs of Albufera de Valencia Natural Park. Between 2004 and 2008 45 beetle taxa were added to the known fauna, including five heterocerid species – *Augyles maritimus* (Guérin-Méneville), *A. marmota* (Kiesenwetter), *Heterocerus aragonicus* Kiesenwetter, *H. flexuosus* Stephens and *H. fossor* Kiesenwetter.

JIM THOMAS 1938-2018

Jim lived in Carnforth, Lancashire, and will be mainly known as a terrestrial coleopterist producing local checklists published by the now defunct Raven Society. His last work was probably the book on the sandhills of South Lancashire (see *Latissimus* 39 14), but he will be remembered aquatically for the discovery of a specimen of *Cybister lateralimarginalis* (De Geer) (see *Latissimus* 26 23). Jim was 80 in March 2018. Thanks to his wife Maureen and to Don Stenhouse for providing the information.
YTU + 5 – NAMING OF PARTS

Five new species of this the most speciose torridincolid genus are described from Brazil. The names thanatos, hypnos, hermes, nyx and coeus are commendably short and erudite, being based on Greek mythological entities, though they cannot of course beat the ultimate in puns, Ytu brutus Spangler. The authors use a formula to describe the arrangement of elytral ridges and striae, which may or may not catch on. The first term, before the /, relates to striae and the second to carinae. The term for striae is subdivided into three parts separated by +. The first part represents the number of complete discal striae followed by d for discal. Two striae may be so close together that they almost suppress the interval between them, this being represented by a hyphen, -, within the parentheses and after the d. The second part of the stria term gives the number of shorter accessory striae followed by a for accessory and, within parentheses, the complete atra with which the accessory stria is linked. The position of a, before or after the number of the stria, shows where the accessory stria is linked to the complete striae, either medially or laterally, respectively. The third part of the striaal term gives the number of sublateral striae followed by sl for sublateral. The carina term has two parts, the first presenting the number of discal carinae followed by d and, in parentheses, the intervals that they occupy, whilst the second part presents the number of sublateral carinae, followed by sl and, in parentheses, the intervals that they occupy. Thus Y. hypnos is 12d(I–II, III–IV, V–VI, VII–VIII, XI–XII) + 2a(Ixa, ax) + 1sl / 5d(III, V, VII, IX, XI) + 1sl(XIII) and Y. coeus is 8d + 2a(IVa, Vla) + 1sl / 0d + 0sl. “For today we have the naming of parts”.

LANZELLOTI B H & FERREIRA Jr N 2018. Five new species of Ytu Reichardt (Coleoptera: Myxophaga: Torridincolidae) and new records from Brazil. Zootaxa 4402 508-524.

PERMIAN WHIRLIGIGS

Tunguskagyrus planus is described from an Upper Permian deposit in the Krasnoyarsk region of Russia. It thus appears that a major splitting event began about 250 million years ago, well before the Permian-Triassic mass extinction. It has the eyes divided into four just as in modern Gyrinidae, and has many other gyrinid features. The mesoventrite is smaller than in modern gyrinids and the changes in this structure are traced through the Mesozoic. The authors provide 3D reconstructions (here) and an artistic reconstruction (our front cover).

MORE ON OCHTHEBIUS BILTONI

O. biltoni Jäch & Delgado was described from Cefalù (see Latissimus 41 12). A new site was found from all those restaurants on the calcareous platform between Mazara del Vallo and Sciacca, 2 m above sea level and in smaller, shallower rockpools than those occupied by O. quadricollis Mulsant and O. subinteger Mulsant & Rey. The authors identify disposal of wastes by tourists as one of the anthropogenic pressures. This is rather reminiscent of the idea that tourists spend their airplane baggage money on bringing old fridges on holiday.

SABATELLI S, MANCINI E & AUDISIO P 2018. Taxonomical and bionomical notes on the Sicilian endemic water beetle Ochthebius (Cobalius) biltoni (Coleoptera: Hydraenidae). Fragmenta entomologica 50 75-76.
SOUTHERN ITALY LIST
The Molise region of Italy is reported as having 192 taxa of water beetles. Among the more interesting are *Hydroporus apenninus* Pederzani & Rocchi, *H. sanfilippoi* Ghidini, *Hydrochus grandicollis* Kiesenwetter (previously recorded in the area as *nitidicollis* Mulsant), *Hydraena alia* d’Orchymont, *H. imperatrix* Knijž, *Ochthebius corcyreus* Jäch, *O. virgula* Ferro, *Hydrocyphon ovatus* Nyholm, *Donacia aquatica* (L.), and four species of *Bagous*. Eleven species have not been recorded since the 1970s or earlier.

Polish Elmidae – a paper from 2011 was accidentally reviewed here!
Seventeen elmid species are known with certainty from Poland with new locality data provided here for thirteen of them. A surprisingly large number have been reported erroneously (*Dupophilus brevis* Mulsant & Rey, *Elmis rioloides* Kuwert, *Limnichus intermedius* Fairmaire, *L. muelleri* (Erichson), *Riolus nitens* (Müller), *R. sodalis* (Erichson), *Stenelmis consobrina* Dufour, and *S. puberula* Reitter). *Esolus pygmaeus* (Müller), *Oulimnius troglodytes* (Gyllenhal) and *Stenelmis canaliculata* (Gyllenhal) all need to have their presence verified. *Esolus parallelepipedus* (Müller) and *Riolus cupreus* (Müller) are recorded with confidence for the first time.

Hydrocyphon in Ayrshire, Scotland
With beetles seemingly only mentioned as twelve families, three of them misspelt, unless Sciaridae were misplaced, then this otherwise interesting paper has little place here. But then those must have been Scirtidae as there is a reference in the text to *Hydrocyphon deflexicollis* (Müller) in the Water of Tig, Ayrshire in 2008.

Kashubian National Park, Poland
This park in northern Poland was surveyed in 2014-2016. The area has large sandy lakes and peatbogs as many small water bodies. Eight-two species were recorded including *Gyrinus natator* L., *Colymbetes paykulli* Erichson, *C. striatus* (L.), *Rhantus incognitus* Scholz, *Graphoderus bilineatus* (De Geer), *Dytiscus lapponicus* Gyllenhal, *Hydroporus figuratus* (Gyllenhal), *H. morio* Aubé, *Helophorus nanus* Sturm, and *Limnebius parvulus* (Herbst).

Danube Diet
The entrails of 802 fish from the Danube at Belgrade were examined for what the fish had been eating. *Riolus cupreus* (Müller) was the only beetle species named.

TEPUI BEETLES
The tepui are the table-top mountains famous for inspiring Sir Arthur Conan Doyle’s “The Lost World”. Raraima is the best known and had a small, black hairy bidessine described from it by Spangler (1981). *Tepuidessus breweri*. *T. grulai* is described from the Acopán Tepui 140 km away. It is named after one of its collectors, Daniel Grula. The new species is also small, black and hairy but differs from *breweri* in appearance, having a near cordate pronotum. It would run to *Papuadessus* Balke, but is placed in *Tepuidessus* for convenience.

REINFORCE YOUR COFFEE TABLE

This book starts badly with the admission by the author of a dipterological leaning and the initial sentence, “Beetles, first and foremost, are flying animals”, something to which Dorothy Jackson for example (see pp. 10-13) might have taken exception. This is a remarkable example of the craft of producing giant books - sixteen chapters, 784 pages, 3.4 kg – even the publisher has shied away from trying to count up all the figures. The book is in two parts, the first for life histories, habits and habitats and the second for diversity.

Chapter 2 concerns Freshwater and Marine Beetles, with an attempt to characterise all ten of the lineages that have gone into freshwater. The examples chosen are mostly Nearctic and Neotropical, with some South African and Chinese larvae, and *Rhantus suturalis* (Macleay) because it is in Australia, not in Europe. There are some examples of “oddball” members of mostly terrestrial families, e.g. the nocturnally active carabid *Cicindis horni* Bruch, that swims out in Argentine lakes to feed on fairy shrimps, but these are not supported by illustrations. The latter start with gyrinid and scirtid larvae for which it seems there are the same identification problems as in the Palaeartic. In fact named species are in short supply but these are made up for by an abundance of information on traits. There is a paddle in the sea with the most unusual example being the *Nacerda melanura* (L.), an oedemerid known as the Wharf Borer, which mines pilings in salt water. The Diversity section has a straightforward guide to adephagan water beetles, referring beforehand to the enigmatic *Myxophaga*, and including the “Mysterious Meriidae”. Plates on pages 232-245 include quite a few repeats from illustrations used to support the main text, and are mainly live shots, plus some stereoscans and carded beetles. The account of Scirtioidea and the Staphyliniformia begins with a fabulous shot of an Australian *Berosus* and has a good range of life photographs including *Helophorus grandis* Illiger as Holarctic on the basis of its introduction from Europe over 100 years ago. This coverage provides a particularly good opportunity to see some of the more hydrophilid genera, as does the treatment of Byrrhoidea for groups like the Eulichadidae in south-east Asian forest streams. Some of the photographs are recycled again in jargon-free keys to families in the last main section. The index is a little odd in that genera are listed alphabetically under each family or its subfamilies, whereas a more simply alphabetical approach overall might have been more effective for those just dipping in to this very dippable-in book.
MOROCCAN AQUATIC POLYPHAGA

This survey covers new and old records for the basin of the Moulouya River and elsewhere in the east of Morocco. The checklist runs to 91 species in seven families. *Ochthebius quadrifossulatus* Waltl and *Pomatinus substriatus* (Müller) are new for the basin and the following are new for the east as a whole: *Helophorus occidentalis* Angus, *H. discrepans* Rey, *H. flavipes* Fab., *Hydrochus flavipes* Küster, *Anacaena globulus*, *Enochrus fuscipennis* (Thomson), *Hydrobius fuscipes* (L.) (ah, but which one?), *Limnebius furcatus* Baudi, *Ochthebius aeneus* Stephens and *O. merinidicus* Ferro. The list includes 12 species of *Helophorus* and 24 *Ochthebius*.

TREE PITFALL TRAPS

Pitfall traps strapped 2-3 metres above the ground on tree trunks in North Devon, England caught a good range of beetles including *Prionocyphon serricornis* (Müller).

CERCYON CASTANEIPENNIS IN ENGLAND

Not a water beetle but another new one chalked up by the Gatekeeper in the south-east. Even if the recent Atlas has not encouraged coleopterists to check this paper will make sure that everyone looks out for a brownish *C. obsoletus* (Gyllenhal) close to their nearest horse or cow.

Latissimus is the newsletter of the Balfour~Browne Club.

Latissimus 42 was produced as a PDF in October 2018
ARCTIC CIRCLE 21-23 JUNE 2019

The Abisko site is 2 degrees north of the Arctic Circle in Lapland, Norrbotten County, Sweden and is dominated by the large lake Torne Träsk at 341 m ASL, with plenty of adjacent mountains reaching 1500 m, and lots of bogs, lakes, pools and streams.

The insects As most members should know, Dytiscidae buck the trend in being species-rich not just in equatorial rainforest but also on the Arctic tundra. Of the more northern species we may expect

- Gyrinus opacus Sahlberg
- Agabus adpressus Aubé
- Agabus arcticus (Paykull)
- Agabus confinis (Gyllenhal)
- Agabus discolor (Harris)
- Agabus elongatus (Gyllenhal)
- Agabus lapponicus (Thomson)
- Agabus serricornis (Paykull)
- Agabus setulosus (Sahlberg)
- Agabus thomsoni (Sahlberg)
- Agabus zetterstedti Thomson
- Colymbetes dolabratus (Paykull)
- Dytiscus lapponicus Gyllenhal
- Boreonectes multilineatus (Falkenström)
- Hydrocolus sahbergi Nilsson
- Hydroopus acutangulus Sturm
- Hydroopus brevis Sahlberg
- Hydroorus fuscipennis Schaum
- Hydroporus geniculatus (Thomson)
- Hydroporus lapponum (Gyllenhal)
- Hygrotus marklini (Gyllenhal)
- Hygrotus novemlineatus (Stephens)
- Ilybius crassus Thomson
- Ilybius opacus (Aubé)
- Ilybius picipes (Kirby)
- Ilybius vittiger (Gyllenhal)
- Oreodytes alpinus (Paykull)
- Helophorus glacialis Villa & Villa
- Helophorus lapponicus Thomson
- Helophorus pallidus Gebler
- Helophorus sibiricus Motschulsky
- Helophorus strandi Angus
- Helophorus arcticus Kuwert

We may also expect not only to search for insects but insects to search for us. The choice of 20-23 June should coincide with the window between snow melt and the emergence of adult mosquitoes. But come prepared – loose but tightly weaved clothing not in blue, your favourite repellent at full strength, perhaps a veil.

Travel Abisko is 1½ hours drive from the nearest airport, Kiruna, and car hire for a long weekend would be about 225€/£200. Make sure you check with others to see if savings can be made by sharing vehicles. There is also a train between Kiruna and Abisko, and most of the daily transports will be on foot. You can get flight connections to Kiruna by Norwegian Air Shuttle and SAS from Stockholm Arlanda, Oslo and possibly Amsterdam (Transavia), and prices do not seem too bad.

Accommodation Twenty beds have been booked at the Abisko Research Station. Prices are around 50€ per night. There are mainly double rooms. Obviously you need Anders to know what you require, preferably more in advance than usual!

Food and drink The research station does not supply food but there is a Mountain Lodge nearby and there are also kitchens on site that can be used for our own catering, purchasing groceries from a local shop. Anders is bringing beer and wine. We'll probably organise a Club Dinner somehow on Saturday 22 June.

Meetings We welcome a few short lectures for a science session. They do not have to be about the Arctic but any with the word “Arctic” in the title might get preference. Anders has, for example, volunteered “Arctic Madagascar” by Johannes Bergsten.

Contact is Anders Nilsson – andersnnilsson258 /at/ gmail.com
POLCIRKELN 21-23 JUNI 2019
Webbplatsen är 2 grader norr om polcirkeln i Lappland, Norrbottens län, och domineras av den stora sjön Torne Träsk, med massor av berg, mossar, pooler och strömmar.

Insekterna

Resor

Boende

Mat och dryck
Forskningsstationen tillhandahåller inte mat, men det finns en Mountain Lodge i närheten och det finns också kök på plats som kan användas för egen mat och inköp av mat från en lokal butik. Anders tar med öl och vin. Vi arrangerar förmodligen ett klubbmiddag på lördag den 22 juni.

Möten

Kontakt
är Anders Nilsson

Addresses of authors
Emmanuel Arriaga-Varela, National Museum, Prague, Czech Republic arriagavarelae/at/natur.cuni.cz
Medeni Aykut, Dicle University, Ziya Gökalp Education Facility, Department of Mathematics and Science, TR-21280 Diyarbakir, Turkey medeniaykut/at/hotmail.com
Rolf Beutel, Institut für Zoologie und Evolutionsforschung, FSU Jena, 07743 Jena, Germany rolf.beutel/at/uni-jena.de
Professor D.T. Bilton, University of Plymouth, Marine Biology & Ecology Research Centre, Plymouth PL4 8AA, England, UK dbilton/at/plym.ac.uk
Matthew Bird, Department of Zoology, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa mattsbird/at/gmail.com
Phil Boon, Scottish Natural Heritage, Silvan House, 231 Corstorphine Road, Edinburgh EH12 7AT, Scotland UK phil.boon/at/snhs.gov.uk
Roger Booth, c/o Natural History Museum, Cromwell Road, London SW7 5BD, London, England, UK r.booth/at/nhm.ac.uk
Bruna M. Braun, Programa de Pós-Graduação em Biodiversidade Animal, Centre de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Avenida Roraima, 1000, CEP 97 105-900 Santa Maria, RS, Brazil brumbraun/at/gmail.com
Lee E. Brown, School of Geography, University of Leeds, Leeds LS2 9JT, England, UK l.brown/at/leeds.ac.uk
Daniel S. Caetano, Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA catesanods/at/gmail.com
Ron Carr, 9 The Mallows, Maidstone, Kent ME14 2PX, England, UK roncarr200/at/aol.com
Davide Cillo, Via Zeffiro 8, 09126 Cagliari, Sardinia, Italy davidcille/at/hotmail.it
Mike Darby drm.darby/at/gmail.com
Stephen Davis, Teagasc, Environment Research Centre, Johnstown Castle, Wexford, County Wexford, Ireland stephen.davis/at/uccconnect.ie
Aurélie Désamoré, Zoology Department, Swedish Museum of Natural History, Stockholm, Sweden aurelie.desamore/at/hotmail.com
Ömer Köksal Erman, Ataturk University, Faculty of Science, Department of Biology, TR25240, Erzurum, Turkey okerman/at/hotmail.com
Dr Hans Fery, Rauschstraße 73, D 13509 Berlin, Germany hanfry/at/aol.com
Dr Elisabeth Geiser, Saint-Julian-Straße 2/314, A-5020 Salzburg, Austria elisabeth.geiser/at/gmx.at
Tomas Grzegrzyck, Department of Systematic Zoology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland tomasgrzegrzyck/at/amu.ed.pl

October 2018

LATISSIMUS 42
CONTENTS

DOROTHY J. JACKSON: A BIBLIOGRAPHY Jack R McLachlan 10

ILYBIUS NEGLECTUS: TO BE, OR NOT TO BE... BELGIAN Kevin Scheers 22

Editorial and miscellanea

Addresses of authors 28 **BARBELLION – A SERIOUS MAJOR?** 15

Books

BRITISH & IRISH HYDROPHILOIDEA 16 **HERTFORDSHIRE BEETLES** 21

CHRYSomELIDAE ILLUSTRATED 5 **NEOTROPICAL DYTISCIDAE KEYS** 9

CUBAN METHOD 9 **REINFORCE YOUR COFFEE TABLE** 25

GLOUCESTERSHIRE BEETLES 17

Papers

A CASE FOR SMALL WATER BODIES 19 **KOLEOPTEROROLOGISCHES RUNDSCHAU** 3

AFRICAN TEMPORARY WATERS REVIEW 6 **LEIELMIS AGAIN** 6

AGRAPHYDRUS IN THE SUBCONTINENT 3 **MORE ON OCHTHEBIUS BILTONI** 23

ALBUFERA, VALENCIA 22 **MOROCCAN AQUATIC POLYPHAGA** 26

ANGIOCHTHEBIUS 3 **MYXOPHAGA PHYLOGENY** 18

AUGYLES CRINITUS IN POLAND 20 **NEW ASIAN BEROUS** 5

AULONOGYRUS OUT OF AFRICA 13 **NEW CALEDONIAN HYDATICUS** 3

AUSTRIAN DONACIA 3 **NEW TURKISH DERONECTES** 21

BARCELONNETTE BEETLES 19 **NINE INDIAN COPLEATUS** 6

BEETLES ON DISPLAY, LONDON 2017 4 **OCHTHEBIINI GETS THE TREATMENT** 9

BREATHING UNDER WATER 15 **PEATLAND RESTORATION IN ENGLAND** 21

CERCYON CASTANEIPENNIS IN ENGLAND 26 **PERMIAN WHIRLIGIGS** 23

CHINESE HALIPLIDAE 3 **PHILOLACCOLILUS...NEW GUINEA** 14

CHINESE LIMNICHID 9 **POLISH ELMIDAE** 24

DANUBE DIET 24 **SARDINIAN BEETLES** 14

DERONECTES ORIGINS 20 **SOUTHERN ITALY LIST** 24

DERONECTES TOLEDOI 18 **STREAM MACROINVERTEBRATE STUDY** 19

DERONECTINA – A MAJOR OVERHAUL 7 **SWAN NEST BEETLES** 6

DYTISCUS LATISSIMUS IN POLAND 17 **TEPUI BEETLES** 25

DYTISCUS LATISSIMUS... BODY SIZE 17 **THE DEATH OF ECOLOGY** 18

FLOWER-INHABITING HYDROPHILIDS 5 **TREE PITFALL TRAPS** 26

FRACTAL STRUCTURE IN POLISH LAKES 4 **TROGLOMORPH COPELATUS** 13

GERMAN DRAINS 15 **TUSCAN ADDITIONS** 14

HYDROCYPHON IN SCOTLAND 24 **TWO STRIPES FOR THE MILITARY** 22

HYDROGLYPHUS HAMULATUS ...THURINGIA 4 **VEGETATION....BRAZILIAN ELMIDS** 16

ITALIAN SPRINGS – ONE ELMID 3 **YTU + 5 – NAMING OF PARTS** 23

KASHUBIAN NATIONAL PARK, POLAND 24

Obituaries

HEINRICH SCHÖNMANN 1948-2017 3 **JIM THOMAS 1938-2018** 22

Meetings

IRELAND 8-11 JUNE 2018 1 **ARCTIC CIRCLE 21-23 JUNE 2019** 27